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Parkinson’s disease (PD) is a complex neurodegenerative

disorder, characterized by the progressive loss of dopaminergic neurons

in substantia nigra pars compacta (SNpc) as a result of intraneural
deposition of aggregated alpha-synuclein (aSyn) in Lewy bodies (LB). aSyn
is an intrinsically-disordered protein, encoded by the SNCA gene, and is
implicated in both familial and sporadic forms of PD. However, we still do
not fully understand if and how aSyn causes cell dysfunction and death.
Therefore, it is essential to develop and explore robust models for bridging
the gap between preclinical research and clinical applications, creating
platforms for testing hypotheses and assessing potential interventions. The
emergence of patient-derived induced pluripotent stem cells (iPSCs) offers
unique opportunities for investigating the cellular phase of PD and related
synucleinopathies by enabling the systematic assessment of phenotypes in
various cell types of relevance for disease. Moreover, advances in PD-derived
iPSC technology also hold promise for cell replacement therapy and drug
discovery efforts using pharmacological or genetic screening approaches.
In this review, we focus on the application of aSyn iPSC models in PD
research, summarizing their anticipated merits, challenges and present-day
implementations. .

LQATLLEIE Parkinson's disease; alpha-synuclein; induced pluripotent stem
cells; midbrain dopaminergic neurons; disease modeling

I. INTRODUCTION

Parkinson’s disease (PD) is the second most prevalent neurodegenerative
disorder afflicting growing number of people worldwide due to the ageing of the
human population. PD is a complex, multisystem disorder characterized both by
motor and non-motor clinical features. The four cardinal motor abnormalities
(bradykinesia, rigidity, resting tremor, and postural instability) have routinely
defined PD clinical diagnosis. However, PD is also associated with non-motor
symptoms (e.g. REM sleep behavior disorder, autonomic dysfunctions) that of-
ten precede motor symptoms and significantly contribute to overall disease
morbidity[:-¢l. The hallmark pathological features of PD are the progressive loss
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and degeneration of dopaminergic neurons in the sub-
stantia nigra pars compacta (SNpc), and the intraneural
accumulation of alpha-synuclein (aSyn), a small protein
encoded by the SNCA gene, in the form of Lewy bodies
(LB) and Lewy neuritesl’78], While the exact physiolog-
ical function of aSyn is still unclear, different studies
suggest that it may act as a molecular chaperoneld],
play arole in both Ca*2 and dopamine homeostasisfio1],
and play a role in synaptic vesicles traffickinglt-13], Un-
der physiological conditions, aSyn is a natively unfold-
ed protein which, under pathological conditions, can
aggregate and form insoluble intracellular inclusions
causing neurodegenerationl4-16l, In general, ~5-10% of
PD cases are classified as familial, while the vast ma-
jority of cases represent sporadic PD. Most forms of
PD share similar clinical and pathological features, al-
though differences have been noted. The SNCA gene
is associated with both familial and sporadic forms as
point mutations and multiplications of the gene cause
familial PD forms, while single nucleotide polymor-
phisms have been identified in idiopathic PD forms as
susceptibility factorsii7.

Given the increased prevalence of PD and our in-
ability to effectively prevent onset or to modify disease
progression, we urgently need to decipher the complex
etiology of the disease in order to enable the develop-
ment of novel therapeutic strategies/121819],

II.

From biology to pathology: aSyn as a marker

and target for intervention

aSyn is a 140 amino acid protein whose primary
sequence can be divided into three main domains: (i) an
N-terminal domainl*-60], which includes a multi-repeat-
ed hexameric motif (KTKEGV) and has alpha-helical
propensity enabling lipid membrane-binding; (ii) a cen-
tral domainl!61-95], which is highly hydrophobic and rep-
resents the most aggregation-prone part due to confor-
mational changes; and (iii) a C-terminal domain[96-140],
which is characterized by a non-defined structure and
enriched in negative charged and proline residues that
plays a role in preventing aSyn self-aggregationl2ol.
aSyn is an intrinsically-disordered protein with a con-
formational plasticity that can adopt different confor-
mations depending on the environmental context21],
Physiologically, two forms of aSyn seem to coexist in a
dynamic balance: the intrinsically disordered cytosolic
monomer and (in large part) a membrane-bound and
aggregation-resistant, helically folded tetramerl2223],

JSCMed | Volume 169 | No. 01 | FEBRUARY 2025

Induced Pluripotent Stem Cell Lines as a Model for Studying the Cellular Phase of Parkinson's Disease

However, tetramer destabilization and imbalances in
the ratio folded tetramer:unfolded monomer may re-
sult in accumulation of pro-aggregating forms, as in LB
pathology, where aSyn adopts a p-sheet conformation
that further recruits monomers to form oligomers and
amyloid fibrilsit224],

aSyn is predominantly located at presynaptic
nerve terminals, although initial studies pointed out its
presence within the nucleus!?sl. The occurrence of aSyn
in the nucleus has been a matter of debate and its roles
in the nucleus are still underappreciated. However, ac-
cumulating evidence, including from our own work,
confirms the presence of aSyn in the nucleus of neu-
ronal cells in human brain tissue as well as in animal
modelsl25-32. Consensus has not been reached regard-
ing the role of nuclear aSyn (aSynNuc). Some studies
demonstrated a protective role against stress, in main-
taining genomic integrity as well as in DNA repair pro-
cesses(33-36], Other studies suggest a putative function
in nucleocytoplasmic transport via the interaction with
Ras-related nuclear protein (RAN), which is impaired by
aSyn mutations!37l. On the other hand, evidence from
both in vitro and in vivo suggests a detrimental role of
aSynNuc highlighting its contribution to the pathogen-
esis of PD and other synucleinopathies/303839], Moreo-
ver, accumulation of aSynNuc can induce significant
transcriptional dysregulation and epigenetic modifica-
tions which are linked to gliosis, increased inflamma-
tion, oxidative stress and mitochondrial dysfunction,
DNA damage and cell cycle disruption as well as altered
ribosomal RNA processing, ultimately accelerating cell
senescence and neurodegeneration(273140-43],

aSyn has emerged both as a biomarker and ther-
apeutic target based on its central role in PD pathogen-
esisl4445], Ongoing efforts using aSyn seed amplification
assays (aSyn-SAAs) were recently reported to detect
seed-competent aSyn species in the CSF and to distin-
guish, with high sensitivity and specificity, healthy con-
trols from prodromal and non-manifesting carriers, and
from sporadic PD patientsl46-48l. Given such biomarker
advances and the fact that aSyn pathology is the gold
standard for establishing the ultimate diagnosis, two
recent studies proposed a major shift from a clinical
to a biological definition of PD using different levels of
‘biological information(4950l, The SynNeurGe classifica-
tion system and the neuronal aSyn disease integrated
staging system (NSD-ISS) were the two initial attempts
to propose research criteria that may prove instrumen-
tal for guiding future clinical trials(st52], Nevertheless, it
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is now necessary to harmonize such classification sys-
tems, and to refine them so that, one day, they may be
used in the clinical practicelssl.

aSyn PTMs, including phosphorylation, nitra-
tion, acetylation, O-GlcNAcylation, glycation, SUMOy]I-
ation, ubiquitination, and C-terminal cleavage, may act
as modifiers of both aSyn biology as well as patholog-
ical processes. As such, there is growing interest in as-
sessing their potential as biomarkers of diseasel54.,

A substantial body of evidence suggests that
alteration/reduction of aSyn aggregation might consti-
tute a promising avenue for therapeutic intervention
in PD. As a result, a plethora of anti-aggregation com-
pounds, encompassing both small molecular entities,
antibodies, and other macromolecular modalities, have
been investigated for their potential to mitigate aSyn
aggregation and its associated neurotoxicity!5556l. More-
over, passive immunization is one of the major thera-
peutic approaches that have been attempted recently
to target aberrant aSyn. Two monoclonal antibodies,
Prasinezumabl5758] (PRX002) and Cinpanemabl59.60]
(BIIBos4) that target C-terminal and N-terminal of aSyn
respectively, have successfully passed phase I clinical
trials. However, the outcomes of the phase II trials were
negative. Currently, further studies with Prasinezumab
are ongoing, and there is hope that some of the strate-
gies being currently tested may prove beneficiall261],

Numerous cellular and animal models!62], with
own strengths and limitations, have been established
for modeling various aspects of PD. However, due to
our limited understanding of the molecular under-
pinnings of PD, and to inherent limitations of model
systems which fail to recapitulate important features
of PD, we still need to continue to develop alternative
models. In this context, induced pluripotent stem cell
(iPSC) models hold a great promise due to their poten-
tial to provide a far greater supply of disease-relevant
cellsl63.64],

III.

Developing aSyn iPSC models

The emergence of induced pluripotent stem cells
(iPSCs) technology led to a scientific breakthrough in
PD modeling, affording the possibility of establishing
cellular models of neurons from live PD patients. IPSCs
refer to pluripotent stem cells that can be generated by
introducing the four transcription factors OCT4, Sox2,
KlIfs4, and c-Myc (Yamanaka factors) into adult somat-
ic cellsl®566], The delivery of Yamanaka factors is per-
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formed using both viral and non-viral based key tech-
niques. For instance, viral vectors such as Sendai virus
(SeV), measles virus and RNA virus-based episomal
vector (REVec) system represent host genome integra-
tion-free options, showing superior differentiation po-
tential and enhanced safety and genetic modification
versatility, respectivelyl67-71, Additionally, non-viral
based approaches including episomal vectors, self-rep-
licating RNA “srRNA’ and nanoparticles delivery are
gaining attention recently due to their potential to
avert viral integration associated risks e.g. insertional
mutagenesis(72-79],

Once reprogrammed, iPSCs can be differentiated
into any cell type (e.g. dopaminergic neurons “DANs");
while maintaining the patient's complete genomic
background and the capability of self-renewal. After
the first successful establishment of PD iPSC models80],
as well as the first differentiation of iPSCs into DANSsI81,
revolutionary advances occurred in PD models derived
from iPSCs, holding a great promise as a valuable tool
not only in PD disease modeling, but also cell replace-
ment therapy, and drug discovery!82-87],

Given the valuable contribution and the prom-
ising application of iPSCs in PD research as well as the
pivotal role of aSyn in PD pathology, this review will
highlight the use of aSyn iPSC models in PD encapsu-
lating their potential, limitations and up-to-date appli-
cations.

Applying advanced viral and non-viral based
approaches, researchers have established various aSyn
iPSC lines (derived from patients with sporadic PD,
SNCA duplication or triplication, point mutations (e.g.
A30P, A53T, E46K, G51D)[6388-93l which have been utilized
in revealing underpinning PD molecular and cellular
mechanisms, potential leveraging therapeutics and the
role of aSyn in disease progression. Interestingly, epi-
somal vectors and mRNA-based non-viral approaches
were employed to generate iPSCs from patients with
sporadic PD and missense G51D mutation, respective-
lyl7294], Furthermore, genome-editing techniques such
as CRISPR/Cas9 and zinc-finger nucleases (ZFNs) have
been used to generate isogenic iPSC lines that varies in
SNCA gene copies and aSyn expression levels, as well
as point mutations’ introduction or correctionl92.95-102],

Finally yet importantly, iPSCs derived from
healthy individuals have a therapeutic potential as
welll03l, They serve as a baseline for comparison be-
sides being crucial research models for decreasing ex-
perimental variability and improving reproducibility,
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investigating non-pathological cellular processes and
differentiation potentiall87.99.104],

It is noteworthy that the generated iPSC lines
must be validated whether they maintain pluripoten-
cy and differentiation potential to ensure their use in
further downstream applications!7293.10l, High-con-
tent screening and fluorescence-activated cell sorting
(EACS) are examples of advanced screening approaches
employed to not only select and validate iPSC clones’
genetic correction, but to confirm the high quality of
generated isogenic iPSCsl9l. (Table 1)

Induced Pluripotent Stem Cell Lines as a Model for Studying the Cellular Phase of Parkinson's Disease

IV.

Applications of aSyn iPSC models in PD re-

search

aSyn iPSC lines have been primarily differenti-
ated into midbrain dopaminergic neurons (mDANSs);
the most affected neuronal subtype in PD. Studies
demonstrate that either SNCA multiplication iPSCs
or those from patients with SNCA mutations can still
differentiate into DA neurons and their differentiation
efficiency are not influenced by elevated SNCA dosage
or aSyn overexpression. However, in some models with

TABLE 1. Examples of aSyn induced pluripotent stem cell models

iPSC Differentiated  Differentiation  Phenotypic Methods to Main research Ref.
model cells protocol manifestations induce/detect applications
aSyn aggregation
Triplication mDANs Dual SMAD ©aSyn mRNA levels;aSyn Not demonstrated Disease modeling; Addressing 163/
SNCA inhibition protein expression and release epigenetic challenges
A53T SNCA; (A9) mDANs | Dual SMAD LB/neurite-like pathology; Basal aSyn pathology; | Disease modeling; studying gene- 193]
isogenic inhibition OVulnerability to mitochondrial | Mitochondrial toxins; | environment interactions; Identifying
counterparts toxins; Mitochondrial NS, OS/ThT staining; | (MEF2C-PGClc) pathway as a potential
dysfunction; ©ONS, OS & Phosphorylation AB- | therapeutic target; HTS for drug
resultant apoptosis based detection; WB | discovery
Triplication DANs; NPCs | Neural aSyn expression; Neurite Not demonstrated Disease modeling; Understanding [103]
SNCA; induction outgrowth deficits; Delayed neuronal differentiation; investigating
Triplication from EBs & maturation; ©Autophagic flux; bioenergetics dysfunctions; Genetic and
SNCAKD Dual SMAD Electrophysiological impairments epigenetic research
inhibition
Triplication pMac pMacpre OBoth intracellular & Fibrils assembling Disease modeling; Exploring non- 189]
SNCA; A53T extracellular aSyn levels; from monomeric aSyn/ | neuronal contributions to PD
SNCA Phagocytosis impairment; Fluorescent labeling
Cytokine dysregulation and microscopy; Flow
cytometry
A53T SNCA DANs Dual SMAD aSyn & Tau aggregation; Basal aSyn Disease modeling; Identifying SMs (1]
inhibition Compromised neuritic outgrowth; | pathology/ Proteinase | (NPT100-18A, NPT100-14A, ELN484228)
Axonal neuropathology; K Treatment; targeting aSyn; Understanding synaptic
Defective synaptic connectivity; | ThS Staining; connectivity; Investigating cellular stress
Dysregulated synaptic signaling | Fluorescence-based | responses
genes’ expression; Pathological | assay; WB
phenotypes linked to PD-
associated dementia
A53T SNCA; (A9) mDANs | Dual SMAD ©Accumulation of soluble aSyn | Basal aSyn pathology; | Disease modeling; Advancing aSyn (102}
isogenic inhibition in mitochondrial fractions; Cardiolipin interaction | immunotherapy; Exploring mitophagy;
counterparts; Impaired mitochondrial & prolonged exposure/ | modeling disease transmission
E46K SNCA dynamics; Fragmented WB analysis; FRET
(hESCs) mitochondria; Pathology analysis; PLA; SR
transmission imaging
Triplication mDANs Dual SMAD Olntracellular aSyn accumulation | PLA; MSD; Image Disease modeling; Exploring 190]
SNCA; A53T inhibition and extracellular release; acquisition bioenergetic and metabolic Pathways
SNCA Oligomeric aSyn pathology;
mitochondrial dysfunction and
aberrant morphology; (VER stress;
Lipid metabolism disruption;
Lysosomal dysfunction
YOPD mDANSs Modified Accumulation of soluble aSyn; Not demonstrated Developing a new diagnostic tool; 18]
dual SMAD Op-PKCo levels; Lysosomal Highlighting the potential of Phorbol
inhibition & mitochondrial dysfunction; Ester drugs as potential therapeutics;
protocol ONa+ current Inclusion criteria for mechanistic
studies and clinical trials; Suggesting
further animal model studies
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TABLE 1. (continue)

iPSC Differentiated  Differentiation Phenotypic Methods to induce/detect Main research Ref.
model cells protocol manifestations aSyn aggregation applications
A30P SNCA; vmDANs Neural Neuritic pathology; Not demonstrated Disease modeling; Understanding 191
isogenic induction from | Mitochondrial dysfunction; energy deficits and vulnerability in
counterparts EBs & Dual ODAT gene expression; PD; Application of high-throughput
SMAD inhibition | sporadic presence of astrocytes approaches (MEAs)
& Oexpression of radial GPCs;
Impaired electrical activity
Duplication mDANs; CPNs; | FGF8- and small | @aSyn pathology; HMW aSyn | Basal aSyn pathology; Disease modeling; Understanding | [107]
SNCA NPCs molecule-based | oligomers’ formation; OROS | OROS/ Sequential neuronal vulnerability; Exploring
midbrain & protein nitration; Ocell protein extraction; WB; genetic contributions
protocol; FGF2- | death; Metabolic dysfunction; | Denaturing SDS-PAGE;
based cor- Mitochondrial impairment Phosphorylation AB-based
tical protocol detection
Triplication mDANs Modified LB-like pathology; Combining seeding with | Disease modeling; Understanding | /5/
SNCA; A53T midbrain FP- Mitochondrial abnormalities; | PFFs and extended culture | genetic influences; Investigating
SNCA based protocol | Vulnerability to mitochondrial | duration/lmmunostaining; | mitochondrial dysfunction
damage Phosphorylation AB-based
detection
Triplication DANs Dual SMAD ©aSyn expression; Altered Not demonstrated Disease modeling; Targeted i
SNCA inhibition firing pattern & DA release; therapies development (D2 receptor
OBurst activity; D2 receptor agonists); Gene expression analysis
functionality
Triplication DANs Modified FP Nuclear fragmentation; pSYN- | Treatment with Disease modeling; Genetic studies & | /772]
SNCA; A53T protocol positive aggregates; Neuronal | exogenous de novo- gene therapy; Biomarker discovery
SNCA; DJ-1 KO death generated polymorphs through understanding the specific
(fibrils or ribbons) or proteins interacting with aSyn
brain-amplified fibrils/Cell | aggregates; Identifying potential drug
Fractionation & WB; FRET | targets (DJ-1)
assay; BiolD2; Confocal
microscopy; Mass
spectrometry
Isogenic iPSCs | mDANs Neural aSyn aggregation; Basal aSyn pathology; Disease modeling; Investigating 1981
panel from induction from | mitochondrial dysfunctions seeding with synthetic aSyn aggregation; Studying genetic
Triplication EBs & Dual & fragmented morphology; fibrils/Nanobody-based modifiers; Identifying modulators
SNCA SMAD inhibition | €90S; Ca*2 mishandling; biosensor (FluoReSyn); | of aSyn aggregates clearance
Vulnerability to aSyn Immunostaining; PLA; (TAX1BP1)
aggregation Near-IR fluorescence
Triplication mDANSs SMs-based @aSyn expression; Small Basal aSyn pathology; Disease modeling; Investigating 7
SNCA; A53T B-sheet-rich oligomeric Endogenous aggregate protein aggregation; Exploring
SNCA; isogenic aggregates formation; formation/SML & SR Ca+2 Dysregulation; Dissecting the
counterparts Mitochondrial damage (€ microscopy; ELISA temporal sequence of pathological
PTP opening threshold) & events
fragmentation; Lysosomal
pathology; Ca+2 desregulation;
ath
A53T SNCA DANs; NPCs | Neural ©aSyn mRNA & protein Not demonstrated [140]
induction from | levels; Synaptic defects & early transcriptomics analysis; Exploring
EBs & Dual synaptic dysfunction; Poor ND components
SMAD inhibition | neuronal networks formation;
Overlap with ND disorders
Triplication mDANSs; MOs | Neural Pathological aSyn aggregates; | OASIS; Using optogenetic | Optogenetic control of protein (106]
SNCA (opto-a- induction from | O TH* mDANs; (WPD—related | proteins/Immunostaining | aggregation; HTS & HCS; Exploring
syn); SNCAKO EBs & Dual cytokines & chemokines (e.g. | & automated image autophagy-dependent mechanisms
SMAD inhibition | MIF) analysis; AIS & autophagic clearance promoting
cpds (BAG956); Development of drug
screening platforms
G51D SNCA Ectodermal, Spontaneous pathogenic ¢.G152A mutation | Not demonstrated Disease modeling; Genetic and 194]
mesodermal, | (EBs) & Direct | in Exon 3 of SNCA gene pathological hallmarks studies
& endodermal | (STEMdiff™
cells Trilineage
Differentiation
Kit)
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TABLE 1. (continue)
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iPSC Differentiated  Differentiation  Phenotypic Methods to induce/detect Main research Ref.
model cells protocol manifestations aSyn aggregation applications
KOLF2 mDAOs; Neural aSyn expression; Rotenone Not demonstrated Disease modeling; Single-cell (104
hiPSC line; Chimeric induction sensitivity; DANs vulnerability transcriptomics; Understanding
Triplication mDAOs from EBs & associated with genes involved in synaptic signaling and cholesterol
SNCA; isogenic Dual SMAD | synaptic signaling and cholesterol biosynthesis; Investigating non-cell
SNCA-2KO; inhibition biosynthesis; Molecular autonomous effects and idiopathic PD
SNCA-4KO dysfunctions; Translation & 0S through chimera organoids
tolerance
SporadicPD | vmDANs Modified ©Pathological aSyn expression | Immunocytochemistry | Disease modeling; Understanding PD | /74//
FP protocol; with somatic localization; &WB as a generalized disorder rather than a
Dual SMAD OViability; OROS; Mitochondrial neuron-centric condition.; Providing a
inhibition abnormalities; Dysregulated platform for biomarker discovery
autophagy; Altered neuronal
electrophysiology
Triplication mDAOs Neural LB-like inclusions; DANS loss; Basal aSyn pathology; | Disease modeling; Exploring [108]
SNCA induction OApoptosis; Neurite deterioration | 3D culture systenv/IF spatiotemporal LB-related events;
from EBs & staining & microscopy; | Studying genetic contributions
Dual SMAD Quantification of
inhibition Immunoreactive areas
Triplication DANs; FPPs | Modified OaSyn expression; Maturation Not demonstrated Disease modeling; Development of
SNCA; isogenic protocol using | variability; Dysregulated DA cell replacement & stem cell-based
SNCA-4KO Dopaminergic | release & firing activity; OTH therapies
Neuron neuronal expression
Differentiation
Kit
A30P SNCA; DANs Modified OaSyn release with Not demonstrated Disease modeling; Pharmacological 12
A30P_ChR2 dual SMAD increasing neuronal activity and optogenetic Modulation
inhibition (pharmacologically or by (bicuculline, CNQX, Ch-R2); Exploring
optogenetic stimulation) & vice a-syn propagation
versa

LEGEND — mDANs: Midbrain dopaminergic neurons; LB: Lewy body; NS: Nitrosative stress; OS: Oxidative stress; ThT: Thioflavin T, AB: Antibody; DANs: Dopaminergic neurons; NPCs: Neural
progenitor cells; EBs: Embryoid bodies; pMac: Macrophages; pMacpre: Non-adherent macrophage precursors; WB: Western blotting; HTS: High-throughput screening; ThS: Thioflavin S; SMs:
Small molecules; FRET: Fluorescence Resonance Energy Transfer; PLA: Proximity Ligation Assay; SR: Super- resolution; ER: Endoplasmic Reticulum; MSD: Meso Scale Diagnostic Human aSyn Kit;
p-PKCo:: Phosphorylated protein kinase Co,; vmDANS: Ventral midbrain dopaminergic neurons; DAT: Dopamine Active Transporter; GPCs: Glia progenitor cells; MEAs: Multielectrode arrays; CPNs:
Cortical projection neurons; HMW: High molecular weight; ROS: Reactive oxygen species; FP: Floor plate; PFFs: Preformed fibrils; DA: Dopamine; BiolD2: Proximity-dependent Biotin identification;
IR: Infrared; PTP: Permeability Transition Pore; SML: Single-molecule localization; ND: Neurodevelopmental; TH: Tyrosine hydroxylase; MIF: Macrophage migration inhibitory factor; OASIS: Opto-
genetic Alpha-Synuclein Induction System; AIS: Aggregates Induction Score; HCS: High-content screening; cpds: Compounds; mDAOs: Midbrain dopaminergic organoids; IF: Inmunofluorescence;
FPPs: Floorplate progenitors; CNQX: Cyanquixaline; ChR2: Channelrhodopsin-2; €: Increased; €3: Decreased

elevated aSyn expression as well as SNCA mutations,
delayed neuronal maturation, compromised neurite
growth, poor neuronal activity and increased neu-
ronal death are observed[899297101105-107], Furthermore,
increased aSyn expression and SNCA mutations in dif-
ferentiated neurons are thought to be associated with
aSyn aggregation and LB-like pathology; which attrib-
utes to mDANSs distinct vulnerability resulting in var-
ious phenotypic alterations and cellular dysfunctions.
These deficits include perturbed synaptic connectivity,
mitochondrial dysfunction, calcium dysregulation, el-
evated endoplasmic reticulum (ER) stress, firing activ-
ity and dopamine release dysregulation(88909298107-111]
Moreover, upon exposure of differentiated neurons
to de novo or brain-amplified fibrils, accelerated aSyn
aggregation (in a time and dose-dependent manner) as

well as LB-like deposits exist[98112], Thereby, aSyn iPSCs
and/or derived neurons have been considered valuable
and essential models for advancing our understand-
ing of aSyn pathology and propagation in PD through
their capability in recapitulating disease-relevant phe-
notypes, elucidating related cellular dysfunctions and
investigating the underlying molecular mechanisms
and pathways involved!6413-115] Besides facilitating
the study of aSyn toxicity, these models have been in-
strumental, in conjunction with other systems, for the
development of personalized medicine and cell thera-
py strategieslio4116117] and testing of therapeutic com-
poundsliosiusnl that help mitigate pathology and re-
store neuronal function.

Recent studies highlighted the prominent impli-
cations of midbrain organoids (MOs) as they can mimic
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the spatial cellular interactions, hence offering a nov-
el platform for studying the spatiotemporal dynamics
of LB pathology and exploring therapeutic interven-
tions in a more physiologically-relevant context using
non-invasive approachesl8293.104106,108.114,120-122],

Other viable strategies include consolidating
stem cell and gene therapy (e.g. knocking down mu-
tant aSyn in iPSCs using shRNA)[23], OASIS (Optoge-
netic Alpha-Synuclein Induction System) platform for
compound screeningli©é], the promising utilization of
extracellular single-chain variable fragments (scFvs) in
mitigating aSyn spread!'24], rapid aSyn inclusionopathy
iPSC models!'?s], and switching the focus of the thera-
peutic pipeline on lowering insoluble aSyn to be more
on restoring its soluble levelsli?6l, (Table 1)

V.

Challenges and future directions

Despite the significant insights that iPSC models
provide into PD research and treatment, they face chal-
lenges associated with recapitulating the multifactorial
and heterogeneous nature of the diseasel64127-131, These
limitations reduce their effectiveness in capturing the
full-spectrum of PD pathology thus hamper findings'
applicability. As demonstrated in (Figure 1), obstacles

Genetic instability &
tumergenicity
High cost & time Limited

requirements predictive value
Line-to-line
variability

Reproducibilty Lack of In Vivo

issues environment

Youthfulness & phenotypic
variability (sporadic PD)

Challenges

Donor consent &
potential misuse

include confined replication of disease complexity, re-
producibility issues, limited predictive value, challeng-
es in modeling aSyn pathology, technical and methodo-
logical challenges, genetic and cellular limitations, and
ethical concernsl2.64.82.84,93,101,113,114,132-136]

Ongoing efforts have been crucial to refine aSyn
iPSC models further in order to enhance their appli-
cability in PD research. A recent body of research has
proposed strategies to enhance models' fidelity and
complexity, and alleviate temporal limitations and lack
of consistency. Several procedures have been prom-
ising such as MOs, 3D bioprinting and scaffolding ap-
proaches, using multi-modal approaches including
mechanistic and artificial intelligence models, rapid
induction of aSyn inclusions, and seeding techniqu
esl27582,98119134135137-139], Nevertheless, 3D organoid mod-
els are more complex and challenging to interpret. A
recent study(108) discussed various obstacles that arise
for an A53T SNCA-derived MO model, such as incon-
sistent LB-like pathology with incomplete morphogen-
esis, difficulties in detection, and limited maturity. They
therefore suggested that additional maturation and
prolonged culture may be necessary to develop a more
complete LB-like pathology.

Combining
metabolismregulating
microRNAs with
reprogramming factors

}‘\Chemical elimination

Clinica I-?rade’ of undifferentiated

safe autologous cells

iPSCs & functional
Genetic
engineering

mDANs

Multiple lines from

each patient

Integrating
multimodal
approaches

inclusions &

Rapid induction of
seeding techniques

Fig 1. Main limitations of current iPSC models in PD and potential tackling approaches. The use of iPSC models in PD research offers significant potential
but also comes with several technical, ethical, and genetic obstacles. Recent studies have proposed a range of methodologies e.g. genetic engineering, and

multimodal integration to address substantial challenges.
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VI. CONCLUSIONS AND OUTLOOK

Unlike the artificially-derived counterparts, iPSC
systems maintain the native cell machinery and tran-
scription feedback mechanisms. Moreover, genetic cor-
rection of iPSC lines followed by back transplantation
into the same patient is opening up new routes in the
development of personalized medicine and PD-directed
therapies. In particular, the aSyn

iPSC models provide an exceptional platform for
studying the crucial PD pathological features (such as
LB formation and neuronal degeneration), discovering
novel therapeutic targets, and testing various com-
pounds that might contribute to mitigating the pathol-
ogy.

To conclude, there is an urgent need for reliable
models in PD context to promote further understand-
ing of the disease mechanisms and early diagnosis,
leading to the discovery of effective treatment options.
The broad contribution made so far by iPSCs technol-
ogy is recognized, and it surely represents a promising
avenue into the future for managing PD. Ongoing re-
finements and technological developments will be con-
stantly needed in order to take full advantage of iPSCs
potentials.
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