

Hebatallah Abdelrasol 101, Tiago Fleming Outeiro 101-4

- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, 37073 Göttingen, Germany.
- 2 Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.
- 3 Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany,
- 4 Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany.

This work is licensed under CC BY-NC-ND 4 0. To view a copy of this license, visit https://creativecommons. org/licenses/by-nc-nd/4.0

ABSTRACT: Parkinson's disease (PD) is a complex neurodegenerative disorder, characterized by the progressive loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) as a result of intraneural deposition of aggregated alpha-synuclein (aSyn) in Lewy bodies (LB). aSyn is an intrinsically-disordered protein, encoded by the SNCA gene, and is implicated in both familial and sporadic forms of PD. However, we still do not fully understand if and how aSyn causes cell dysfunction and death. Therefore, it is essential to develop and explore robust models for bridging the gap between preclinical research and clinical applications, creating platforms for testing hypotheses and assessing potential interventions. The emergence of patient-derived induced pluripotent stem cells (iPSCs) offers unique opportunities for investigating the cellular phase of PD and related synucleinopathies by enabling the systematic assessment of phenotypes in various cell types of relevance for disease. Moreover, advances in PD-derived iPSC technology also hold promise for cell replacement therapy and drug discovery efforts using pharmacological or genetic screening approaches. In this review, we focus on the application of aSyn iPSC models in PD research, summarizing their anticipated merits, challenges and present-day implementations..

KEY WORDS: Parkinson's disease; alpha-synuclein; induced pluripotent stem cells; midbrain dopaminergic neurons; disease modeling

I. INTRODUCTION

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder afflicting growing number of people worldwide due to the ageing of the human population. PD is a complex, multisystem disorder characterized both by motor and non-motor clinical features. The four cardinal motor abnormalities (bradykinesia, rigidity, resting tremor, and postural instability) have routinely defined PD clinical diagnosis. However, PD is also associated with non-motor symptoms (e.g. REM sleep behavior disorder, autonomic dysfunctions) that often precede motor symptoms and significantly contribute to overall disease morbidity[1-6]. The hallmark pathological features of PD are the progressive loss

and degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and the intraneural accumulation of alpha-synuclein (aSyn), a small protein encoded by the SNCA gene, in the form of Lewy bodies (LB) and Lewy neurites[1,7,8]. While the exact physiological function of aSyn is still unclear, different studies suggest that it may act as a molecular chaperone^[9], play a role in both Ca+2 and dopamine homeostasis[10,11], and play a role in synaptic vesicles trafficking[11-13]. Under physiological conditions, aSyn is a natively unfolded protein which, under pathological conditions, can aggregate and form insoluble intracellular inclusions causing neurodegeneration^[14-16]. In general, ~5-10% of PD cases are classified as familial, while the vast majority of cases represent sporadic PD. Most forms of PD share similar clinical and pathological features, although differences have been noted. The SNCA gene is associated with both familial and sporadic forms as point mutations and multiplications of the gene cause familial PD forms, while single nucleotide polymorphisms have been identified in idiopathic PD forms as susceptibility factors[17].

Given the increased prevalence of PD and our inability to effectively prevent onset or to modify disease progression, we urgently need to decipher the complex etiology of the disease in order to enable the development of novel therapeutic strategies^[12,18,19].

II.

From biology to pathology: aSyn as a marker and target for intervention

aSyn is a 140 amino acid protein whose primary sequence can be divided into three main domains: (i) an N-terminal domain^[1-60], which includes a multi-repeated hexameric motif (KTKEGV) and has alpha-helical propensity enabling lipid membrane-binding; (ii) a central domain^[61-95], which is highly hydrophobic and represents the most aggregation-prone part due to conformational changes; and (iii) a C-terminal domain[96-140], which is characterized by a non-defined structure and enriched in negative charged and proline residues that plays a role in preventing aSyn self-aggregation^[20]. aSyn is an intrinsically-disordered protein with a conformational plasticity that can adopt different conformations depending on the environmental context^[21]. Physiologically, two forms of aSyn seem to coexist in a dynamic balance: the intrinsically disordered cytosolic monomer and (in large part) a membrane-bound and aggregation-resistant, helically folded tetramer^[22,23]. However, tetramer destabilization and imbalances in the ratio folded tetramer:unfolded monomer may result in accumulation of pro-aggregating forms, as in LB pathology, where aSyn adopts a β -sheet conformation that further recruits monomers to form oligomers and amyloid fibrils^[12,24].

aSyn is predominantly located at presynaptic nerve terminals, although initial studies pointed out its presence within the nucleus^[25]. The occurrence of aSyn in the nucleus has been a matter of debate and its roles in the nucleus are still underappreciated. However, accumulating evidence, including from our own work, confirms the presence of aSyn in the nucleus of neuronal cells in human brain tissue as well as in animal models[25-32]. Consensus has not been reached regarding the role of nuclear aSyn (aSynNuc). Some studies demonstrated a protective role against stress, in maintaining genomic integrity as well as in DNA repair processes[33-36]. Other studies suggest a putative function in nucleocytoplasmic transport via the interaction with Ras-related nuclear protein (RAN), which is impaired by aSyn mutations^[37]. On the other hand, evidence from both in vitro and in vivo suggests a detrimental role of aSynNuc highlighting its contribution to the pathogenesis of PD and other synucleinopathies^[30,38,39]. Moreover, accumulation of aSynNuc can induce significant transcriptional dysregulation and epigenetic modifications which are linked to gliosis, increased inflammation, oxidative stress and mitochondrial dysfunction, DNA damage and cell cycle disruption as well as altered ribosomal RNA processing, ultimately accelerating cell senescence and neurodegeneration[27,31,40-43].

aSyn has emerged both as a biomarker and therapeutic target based on its central role in PD pathogenesis[44,45]. Ongoing efforts using aSyn seed amplification assays (aSyn-SAAs) were recently reported to detect seed-competent aSyn species in the CSF and to distinguish, with high sensitivity and specificity, healthy controls from prodromal and non-manifesting carriers, and from sporadic PD patients^[46-48]. Given such biomarker advances and the fact that aSyn pathology is the gold standard for establishing the ultimate diagnosis, two recent studies proposed a major shift from a clinical to a biological definition of PD using different levels of 'biological' information^[49,50]. The SynNeurGe classification system and the neuronal aSyn disease integrated staging system (NSD-ISS) were the two initial attempts to propose research criteria that may prove instrumental for guiding future clinical trials[51,52]. Nevertheless, it

is now necessary to harmonize such classification systems, and to refine them so that, one day, they may be used in the clinical practice^[53].

aSyn PTMs, including phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination, and C-terminal cleavage, may act as modifiers of both aSyn biology as well as pathological processes. As such, there is growing interest in assessing their potential as biomarkers of disease^[54].

A substantial body of evidence suggests that alteration/reduction of aSyn aggregation might constitute a promising avenue for therapeutic intervention in PD. As a result, a plethora of anti-aggregation compounds, encompassing both small molecular entities, antibodies, and other macromolecular modalities, have been investigated for their potential to mitigate aSyn aggregation and its associated neurotoxicity[55,56]. Moreover, passive immunization is one of the major therapeutic approaches that have been attempted recently to target aberrant aSyn. Two monoclonal antibodies, Prasinezumab^[57,58] (PRX002) and Cinpanemab^[59,60] (BIIB054) that target C-terminal and N-terminal of aSyn respectively, have successfully passed phase I clinical trials. However, the outcomes of the phase II trials were negative. Currently, further studies with Prasinezumab are ongoing, and there is hope that some of the strategies being currently tested may prove beneficial[12,61].

Numerous cellular and animal models^[62], with own strengths and limitations, have been established for modeling various aspects of PD. However, due to our limited understanding of the molecular underpinnings of PD, and to inherent limitations of model systems which fail to recapitulate important features of PD, we still need to continue to develop alternative models. In this context, induced pluripotent stem cell (iPSC) models hold a great promise due to their potential to provide a far greater supply of disease-relevant cells^[63,64].

III.

Developing aSyn iPSC models

The emergence of induced pluripotent stem cells (iPSCs) technology led to a scientific breakthrough in PD modeling, affording the possibility of establishing cellular models of neurons from live PD patients. IPSCs refer to pluripotent stem cells that can be generated by introducing the four transcription factors OCT4, Sox2, Klf4, and c-Myc (Yamanaka factors) into adult somatic cells^[65,66]. The delivery of Yamanaka factors is per-

formed using both viral and non-viral based key techniques. For instance, viral vectors such as Sendai virus (SeV), measles virus and RNA virus-based episomal vector (REVec) system represent host genome integration-free options, showing superior differentiation potential and enhanced safety and genetic modification versatility, respectively^[67–71]. Additionally, non-viral based approaches including episomal vectors, self-replicating RNA "srRNA" and nanoparticles delivery are gaining attention recently due to their potential to avert viral integration associated risks e.g. insertional mutagenesis^[72–79].

Once reprogrammed, iPSCs can be differentiated into any cell type (e.g. dopaminergic neurons "DANs"); while maintaining the patient's complete genomic background and the capability of self-renewal. After the first successful establishment of PD iPSC models^[80], as well as the first differentiation of iPSCs into DANs^[81], revolutionary advances occurred in PD models derived from iPSCs, holding a great promise as a valuable tool not only in PD disease modeling, but also cell replacement therapy, and drug discovery^[82–87].

Given the valuable contribution and the promising application of iPSCs in PD research as well as the pivotal role of aSyn in PD pathology, this review will highlight the use of aSyn iPSC models in PD encapsulating their potential, limitations and up-to-date applications.

Applying advanced viral and non-viral based approaches, researchers have established various aSyn iPSC lines (derived from patients with sporadic PD, SNCA duplication or triplication, point mutations (e.g. A30P, A53T, E46K, G51D)[63,88-93] which have been utilized in revealing underpinning PD molecular and cellular mechanisms, potential leveraging therapeutics and the role of aSyn in disease progression. Interestingly, episomal vectors and mRNA-based non-viral approaches were employed to generate iPSCs from patients with sporadic PD and missense G51D mutation, respectively^[72,94]. Furthermore, genome-editing techniques such as CRISPR/Cas9 and zinc-finger nucleases (ZFNs) have been used to generate isogenic iPSC lines that varies in SNCA gene copies and aSyn expression levels, as well as point mutations' introduction or correction^[92,95–102].

Finally yet importantly, iPSCs derived from healthy individuals have a therapeutic potential as well^[103]. They serve as a baseline for comparison besides being crucial research models for decreasing experimental variability and improving reproducibility,

investigating non-pathological cellular processes and differentiation potential^[87,99,104].

It is noteworthy that the generated iPSC lines must be validated whether they maintain pluripotency and differentiation potential to ensure their use in further downstream applications^[72,99,101]. High-content screening and fluorescence-activated cell sorting (FACS) are examples of advanced screening approaches employed to not only select and validate iPSC clones' genetic correction, but to confirm the high quality of generated isogenic iPSCs[96]. (Table 1)

TABLE 1. Examples of aSyn induced pluripotent stem cell models

Differentiated Differentiation Phonetypie

IV.

Applications of aSyn iPSC models in PD re-

aSyn iPSC lines have been primarily differentiated into midbrain dopaminergic neurons (mDANs); the most affected neuronal subtype in PD. Studies demonstrate that either SNCA multiplication iPSCs or those from patients with SNCA mutations can still differentiate into DA neurons and their differentiation efficiency are not influenced by elevated SNCA dosage or aSyn overexpression. However, in some models with

iPSC model	Differentiated cells	Differentiation protocol	Phenotypic manifestations	Methods to induce/detect aSyn aggregation	Main research applications	Ref.
Triplication SNCA	mDANs	Dual SMAD inhibition	O aSyn mRNA levels; O aSyn protein expression and release	Not demonstrated	Disease modeling; Addressing epigenetic challenges	[63]
A53T SNCA; isogenic counterparts	(A9) mDANs	Dual SMAD inhibition	LB/neurite-like pathology; OVulnerability to mitochondrial toxins; Mitochondrial dysfunction; ONS, OS & resultant apoptosis	Basal aSyn pathology; Mitochondrial toxins; NS, OS/ThT staining; Phosphorylation AB- based detection; WB	Disease modeling; studying gene- environment interactions; Identifying (MEF2C-PGC1α) pathway as a potential therapeutic target; HTS for drug discovery	[95]
Triplication SNCA; Triplication SNCA KD	DANs; NPCs	Neural induction from EBs & Dual SMAD inhibition	OaSyn expression; Neurite outgrowth deficits; Delayed maturation; OAutophagic flux; Electrophysiological impairments	Not demonstrated	Disease modeling; Understanding neuronal differentiation; investigating bioenergetics dysfunctions; Genetic and epigenetic research	[105]
Triplication SNCA; A53T SNCA	рМас	pMacpre	OBoth intracellular & extracellular aSyn levels; Phagocytosis impairment; Cytokine dysregulation	Fibrils assembling from monomeric aSyn/ Fluorescent labeling and microscopy; Flow cytometry	Disease modeling; Exploring non- neuronal contributions to PD	[89]
A53T SNCA	DANs	Dual SMAD inhibition	aSyn & Tau aggregation; Compromised neuritic outgrowth; Axonal neuropathology; Defective synaptic connectivity; Dysregulated synaptic signaling genes' expression; Pathological phenotypes linked to PD- associated dementia	Basal aSyn pathology/ Proteinase K Treatment; ThS Staining; Fluorescence-based assay; WB	Disease modeling; Identifying SMs (NPT100-18A, NPT100-14A, ELN484228) targeting aSyn; Understanding synaptic connectivity; Investigating cellular stress responses	[110]
A53T SNCA; isogenic counterparts; E46K SNCA (hESCs)	(A9) mDANs	Dual SMAD inhibition	OAccumulation of soluble aSyn in mitochondrial fractions; Impaired mitochondrial dynamics; Fragmented mitochondria; Pathology transmission	Basal aSyn pathology; Cardiolipin interaction & prolonged exposure/ WB analysis; FRET analysis; PLA; SR imaging	Disease modeling; Advancing aSyn immunotherapy; Exploring mitophagy; modeling disease transmission	[102]
Triplication SNCA; A53T SNCA	mDANs	Dual SMAD inhibition	OIntracellular aSyn accumulation and extracellular release; Oligomeric aSyn pathology; mitochondrial dysfunction and aberrant morphology; OER stress; Lipid metabolism disruption; Lysosomal dysfunction	PLA; MSD; Image acquisition	Disease modeling; Exploring bioenergetic and metabolic Pathways	[90]
YOPD	mDANs	Modified dual SMAD inhibition protocol	Accumulation of soluble aSyn; Op-PKCα levels; Lysosomal & mitochondrial dysfunction; ONa+ current	Not demonstrated	Developing a new diagnostic tool; Highlighting the potential of Phorbol Ester drugs as potential therapeutics; Inclusion criteria for mechanistic studies and clinical trials; Suggesting further animal model studies	[118]

TABLE 1. (continue)

iPSC model	Differentiated cells	Differentiation protocol	Phenotypic manifestations	Methods to induce/detect aSyn aggregation	Main research applications	Ref.
A30P SNCA; isogenic counterparts	vmDANs	Neural induction from EBs & Dual SMAD inhibition	Neuritic pathology; Mitochondrial dysfunction; ODAT gene expression; sporadic presence of astrocytes A expression of radial GPCs; Impaired electrical activity	Not demonstrated	Disease modeling, Understanding energy deficits and vulnerability in PD; Application of high-throughput approaches (MEAs)	[96]
Duplication SNCA	mDANs; CPNs; NPCs	FGF8- and small molecule-based midbrain protocol; FGF2- based cor- tical protocol	OaSyn pathology; HMW aSyn oligomers' formation; OROS & protein nitration; Ocell death; Metabolic dysfunction; Mitochondrial impairment	Basal aSyn pathology; ••• ROS/ Sequential protein extraction; WB; Denaturing SDS-PAGE; Phosphorylation AB-based detection	Disease modeling; Understanding neuronal vulnerability; Exploring genetic contributions	[107]
Triplication SNCA; A53T SNCA	mDANs	Modified midbrain FP- based protocol	LB-like pathology; Mitochondrial abnormalities; Vulnerability to mitochondrial damage	Combining seeding with PFFs and extended culture duration/Immunostaining; Phosphorylation AB-based detection	Disease modeling; Understanding genetic influences; Investigating mitochondrial dysfunction	[88]
Triplication SNCA	DANs	Dual SMAD inhibition	• • • • • • • • • • • • • • • • • • •	Not demonstrated	Disease modeling; Targeted therapies development (D2 receptor agonists); Gene expression analysis	[111]
Triplication SNCA; A53T SNCA; DJ-1 KO	DANs	Modified FP protocol	Nuclear fragmentation; pSYN- positive aggregates; Neuronal death	Treatment with exogenous de novo- generated polymorphs (fibrils or ribbons) or brain-amplified fibrils/Cell Fractionation & WB; FRET assay; BioID2; Confocal microscopy; Mass spectrometry	Disease modeling; Genetic studies & gene therapy; Biomarker discovery through understanding the specific proteins interacting with aSyn aggregates; Identifying potential drug targets (DJ-1)	[112]
Isogenic iPSCs panel from Triplication SNCA	mDANs	Neural induction from EBs & Dual SMAD inhibition	aSyn aggregation; mitochondrial dysfunctions & fragmented morphology; OOS; Ca+2 mishandling; Vulnerability to aSyn aggregation	Basal aSyn pathology; seeding with synthetic fibrils/Nanobody-based biosensor (FluoReSyn); Immunostaining; PLA; Near-IR fluorescence	Disease modeling; Investigating aSyn aggregation; Studying genetic modifiers; Identifying modulators of aSyn aggregates clearance (TAX1BP1)	[98]
Triplication SNCA; A53T SNCA; isogenic counterparts	mDANs	SMs-based		Basal aSyn pathology; Endogenous aggregate formation/SML & SR microscopy; ELISA	Disease modeling; Investigating protein aggregation; Exploring Ca+2 Dysregulation; Dissecting the temporal sequence of pathological events	[7]
A53T SNCA	DANs; NPCs	Neural induction from EBs & Dual SMAD inhibition	♠aSyn mRNA & protein levels; Synaptic defects & early synaptic dysfunction; Poor neuronal networks formation; Overlap with ND disorders	Not demonstrated	Disease modeling; Comparative transcriptomics analysis; Exploring ND components	[140]
Triplication SNCA (opto-a- syn); SNCA KO	mDANs; MOs	Neural induction from EBs & Dual SMAD inhibition	Pathological aSyn aggregates; O TH+ mDANs; OPD-related cytokines & chemokines (e.g. MIF)	OASIS; Using optogenetic proteins/Immunostaining & automated image analysis; AIS	Optogenetic control of protein aggregation; HTS & HCS; Exploring autophagy-dependent mechanisms & autophagic clearance promoting cpds (BAG956); Development of drug screening platforms	[106]
G51D SNCA	Ectodermal, mesodermal, & endodermal cells	Spontaneous (EBs) & Direct (STEMdiff TM Trilineage Differentiation Kit)	pathogenic c.G152A mutation in Exon 3 of SNCA gene	Not demonstrated	Disease modeling; Genetic and pathological hallmarks studies	[94]

TABLE 1. (continue)

iPSC model	Differentiated cells	Differentiation protocol	Phenotypic manifestations	Methods to induce/detect aSyn aggregation	Main research applications	Ref.
KOLF2 hiPSC line; Triplication SNCA; isogenic SNCA-2KO; SNCA-4KO	mDAOs; Chimeric mDAOs	Neural induction from EBs & Dual SMAD inhibition	♠aSyn expression; Rotenone sensitivity; DANs vulnerability associated with genes involved in synaptic signaling and cholesterol biosynthesis; Molecular dysfunctions; Translation & OS tolerance	Not demonstrated	Disease modeling; Single-cell transcriptomics; Understanding synaptic signaling and cholesterol biosynthesis; Investigating non-cell autonomous effects and idiopathic PD through chimera organoids	[104]
Sporadic PD	vmDANs	Modified FP protocol; Dual SMAD inhibition	OPathological aSyn expression with somatic localization; OViability; OROS; Mitochondrial abnormalities; Dysregulated autophagy; Altered neuronal electrophysiology	Immunocytochemistry & WB	Disease modeling; Understanding PD as a generalized disorder rather than a neuron-centric condition.; Providing a platform for biomarker discovery	[141]
Triplication SNCA	mDAOs	Neural induction from EBs & Dual SMAD inhibition	LB-like inclusions; DANs loss; •• Apoptosis; Neurite deterioration	Basal aSyn pathology; 3D culture system/IF staining & microscopy; Quantification of immunoreactive areas	Disease modeling; Exploring spatiotemporal LB-related events; Studying genetic contributions	[108]
Triplication SNCA; isogenic SNCA-4KO	DANs; FPPs	Modified protocol using Dopaminergic Neuron Differentiation Kit	Asyn expression; Maturation variability; Dysregulated DA release & firing activity; OTH neuronal expression	Not demonstrated	Disease modeling; Development of cell replacement & stem cell-based therapies	[97]
A30P SNCA; A30P_ChR2	DANs	Modified dual SMAD inhibition	♠aSyn release with increasing neuronal activity (pharmacologically or by optogenetic stimulation) & vice versa	Not demonstrated	Disease modeling; Pharmacological and optogenetic Modulation (bicuculline, CNQX, Ch-R2); Exploring a-syn propagation	[142]

LEGEND - mDANs: Midbrain dopaminergic neurons; LB: Lewy body; NS: Nitrosative stress; OS: Oxidative stress; ThT: Thioflavin T; AB: Antibody; DANs: Dopaminergic neurons; NPCs: Neural progenitor cells; EBs: Embryoid bodies; pMac: Macrophages; pMacpre: Non-adherent macrophage precursors; WB: Western blotting; HTS: High-throughput screening; ThS: Thioflavin S; SMs: Small molecules; FRET: Fluorescence Resonance Energy Transfer; PLA: Proximity Ligation Assay; SR: Super- resolution; ER: Endoplasmic Reticulum; MSD: Meso Scale Diagnostic Human aSyn Kit; p-PKCa: Phosphorylated protein kinase Ca; vmDANs: Ventral midbrain dopaminergic neurons; DAT: Dopamine Active Transporter; GPCs: Glia progenitor cells; MEAs: Multielectrode arrays; CPNs: Cortical projection neurons; HMW: High molecular weight; ROS: Reactive oxygen species; FP: Floor plate; PFFs: Preformed fibrils; DA: Dopamine; BioID2: Proximity-dependent Biotin identification; IR: Infrared; PTP: Permeability Transition Pore; SML: Single-molecule localization; ND: Neurodevelopmental; TH: Tyrosine hydroxylase; MIF: Macrophage migration inhibitory factor; OASIS: Optogenetic Alpha-Synuclein Induction System; AIS: Aggregates Induction Score; HCS: High-content screening; cpds: Compounds; mDAOs: Midbrain dopaminergic organoids; IF: Immunofluorescence; FPPs: Floorplate progenitors; CNQX: Cyanquixaline; ChR2: Channelrhodopsin-2; O: Increased; O: Decreased

elevated aSyn expression as well as SNCA mutations, delayed neuronal maturation, compromised neurite growth, poor neuronal activity and increased neuronal death are observed[89,92,97,101,105-107]. Furthermore, increased aSyn expression and SNCA mutations in differentiated neurons are thought to be associated with aSyn aggregation and LB-like pathology; which attributes to mDANs distinct vulnerability resulting in various phenotypic alterations and cellular dysfunctions. These deficits include perturbed synaptic connectivity, mitochondrial dysfunction, calcium dysregulation, elevated endoplasmic reticulum (ER) stress, firing activity and dopamine release dysregulation[88,90,92,98,107-111]. Moreover, upon exposure of differentiated neurons to de novo or brain-amplified fibrils, accelerated aSyn aggregation (in a time and dose-dependent manner) as

well as LB-like deposits exist[98,112]. Thereby, aSyn iPSCs and/or derived neurons have been considered valuable and essential models for advancing our understanding of aSyn pathology and propagation in PD through their capability in recapitulating disease-relevant phenotypes, elucidating related cellular dysfunctions and investigating the underlying molecular mechanisms and pathways involved^[64,113–115]. Besides facilitating the study of aSyn toxicity, these models have been instrumental, in conjunction with other systems, for the development of personalized medicine and cell therapy strategies[104,116,117], and testing of therapeutic compounds[106,111,118,119] that help mitigate pathology and restore neuronal function.

Recent studies highlighted the prominent implications of midbrain organoids (MOs) as they can mimic

the spatial cellular interactions, hence offering a novel platform for studying the spatiotemporal dynamics of LB pathology and exploring therapeutic interventions in a more physiologically-relevant context using $non-invasive\ approaches {\small [82,93,104,106,108,114,120-122]}.$

Other viable strategies include consolidating stem cell and gene therapy (e.g. knocking down mutant aSyn in iPSCs using shRNA)[123], OASIS (Optogenetic Alpha-Synuclein Induction System) platform for compound screening[106], the promising utilization of extracellular single-chain variable fragments (scFvs) in mitigating aSyn spread[124], rapid aSyn inclusionopathy iPSC models[125], and switching the focus of the therapeutic pipeline on lowering insoluble aSyn to be more on restoring its soluble levels[126]. (Table 1)

V.

Challenges and future directions

Despite the significant insights that iPSC models provide into PD research and treatment, they face challenges associated with recapitulating the multifactorial and heterogeneous nature of the disease^[64,127-131]. These limitations reduce their effectiveness in capturing the full-spectrum of PD pathology thus hamper findings' applicability. As demonstrated in (Figure 1), obstacles include confined replication of disease complexity, reproducibility issues, limited predictive value, challenges in modeling aSyn pathology, technical and methodological challenges, genetic and cellular limitations, and ethical concerns[2,64,82,84,93,101,113,114,132-136].

Ongoing efforts have been crucial to refine aSyn iPSC models further in order to enhance their applicability in PD research. A recent body of research has proposed strategies to enhance models' fidelity and complexity, and alleviate temporal limitations and lack of consistency. Several procedures have been promising such as MOs, 3D bioprinting and scaffolding approaches, using multi-modal approaches including mechanistic and artificial intelligence models, rapid induction of aSyn inclusions, and seeding techniqu es[2,75,82,98,119,134,135,137-139]. Nevertheless, 3D organoid models are more complex and challenging to interpret. A recent study(108) discussed various obstacles that arise for an A53T SNCA-derived MO model, such as inconsistent LB-like pathology with incomplete morphogenesis, difficulties in detection, and limited maturity. They therefore suggested that additional maturation and prolonged culture may be necessary to develop a more complete LB-like pathology.

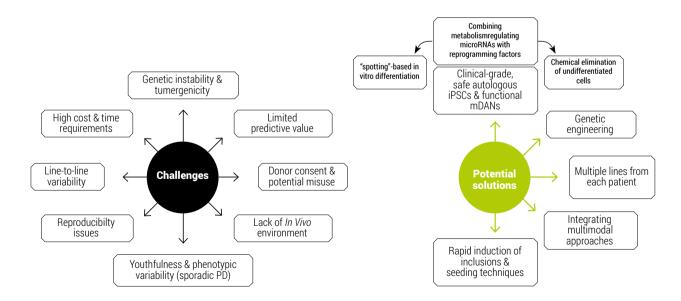


Fig 1. Main limitations of current iPSC models in PD and potential tackling approaches. The use of iPSC models in PD research offers significant potential but also comes with several technical, ethical, and genetic obstacles. Recent studies have proposed a range of methodologies e.g. genetic engineering, and multimodal integration to address substantial challenges.

VI. CONCLUSIONS AND OUTLOOK

Unlike the artificially-derived counterparts, iPSC systems maintain the native cell machinery and transcription feedback mechanisms. Moreover, genetic correction of iPSC lines followed by back transplantation into the same patient is opening up new routes in the development of personalized medicine and PD-directed therapies. In particular, the aSyn

iPSC models provide an exceptional platform for studying the crucial PD pathological features (such as LB formation and neuronal degeneration), discovering novel therapeutic targets, and testing various compounds that might contribute to mitigating the pathology.

To conclude, there is an urgent need for reliable models in PD context to promote further understanding of the disease mechanisms and early diagnosis, leading to the discovery of effective treatment options. The broad contribution made so far by iPSCs technology is recognized, and it surely represents a promising avenue into the future for managing PD. Ongoing refinements and technological developments will be constantly needed in order to take full advantage of iPSCs potentials.

ACKNOWLEDGEMENTS

TFO is supported by the DFG Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC).

REFERENCES

- Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature [Internet]. 1997;388(6645):839-40. Available from: https://doi.org/10.1038/42166
- Pandey S. Jirásko M. Lochman J. Chvátal A. Chottova Dvorakova M, Kučera R. iPSCs in Neurodegenerative Disorders: A Unique Platform for Clinical Research and Personalized Medicine. Vol. 12, Journal of Personalized Medicine. MDPI; 2022.
- Getz SJ, Levin B. Cognitive and Neuropsychiatric Features of Early Parkinson's Disease. Arch Clin Neuropsychol Off J Natl Acad Neuropsychol. 2017 Nov;32(7):769-85.
- Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Prim [Internet]. 2017;3(1):17013. Available from: https://doi.org/10.1038/nrdp.2017.13
- Váradi C. Clinical Features of Parkinson's Disease: The Evolution of Critical Symptoms. Biology (Basel). 2020 May;9(5).
- McGregor MM, Nelson AB. Circuit Mechanisms of Parkinson's Disease. Neuron. 2019 Mar;101(6):1042-56.
- Virdi GS, Choi ML, Evans JR, Yao Z, Athauda D, Strohbuecker S, et al. Protein aggregation and calcium dysregulation are hallmarks of familial Parkinson's disease in midbrain dopaminergic neurons. npj Park Dis. 2022;8(1).
- Peng C, Gathagan RJ, Covell DJ, Medellin C, Stieber A, Robinson JL, et al. Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature [Internet]. 2018;557(7706):558-63.

- Available from: https://doi.org/10.1038/s41586-018-0104-4 Burré J, Sharma M, Südhof TC. Cell Biology and Pathophysiology of a-Synuclein. Cold Spring Harb Perspect Med. 2018 Mar;8(3).
- Somayaji M, Cataldi S, Choi SJ, Edwards RH, Mosharov E V, Sulzer D. A dual role for a-synuclein in facilitation and depression of dopamine release from substantia nigra neurons in vivo. Proc Natl Acad Sci U S A. 2020 Dec:117(51):32701-10.
- Villar-Piqué A, Lopes da Fonseca T, Outeiro TF. Structure, function and toxicity of alpha-synuclein: the Bermuda triangle in synucleinopathies. J Neurochem. 2016 Oct;139(S1):240-55.
- Calabresi P, Di Lazzaro G, Marino G, Campanelli F, Ghiglieri V. Advances in understanding the function of alpha-synuclein: implications for Parkinson's disease. Brain. 2023 Sep;146(9):3587-97.
- Nordengen K, Morland C. From Synaptic Physiology to Synaptic Pathology. The Enigma of α-Synuclein. Vol. 25, International Journal of Molecular Sciences. 2024.
- Villar-Piqué A. Lopes da Fonseca T. Outeiro TF. Structure. function and toxicity of alpha-synuclein: the Bermuda triangle in synucleinopathies. J Neurochem [Internet]. 2016 Oct 1:139(S1):240-55. Available from: https://doi.org/10.1111/jnc.13249
- Beyer K. Alpha-synuclein structure, posttranslational modification and alternative splicing as aggregation enhancers. Acta Neuropathol. 2006 Sep;112(3):237-51.
- Xu L, Pu J. Alpha-Synuclein in Parkinson's Disease: From Pathogenetic Dysfunction to Potential Clinical Application. Parkinsons Dis [Internet], 2016/08/17, 2016:2016:1720621. Available from: https://pubmed.ncbi.nlm.nih.gov/27610264
- Redenšek S, Trošt M, Dolžan V. Genetic Determinants of Parkinson's Disease: Can They Help to Stratify the Patients Based on the Underlying Molecular Defect? [Internet]. Vol. 9, Frontiers in Aging Neuroscience . 2017, p. 20, Available from: https:// www.frontiersin.org/article/10.3389/fnagi.2017.00020
- 18. Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson's disease. J Chem Neuroanat. 2020 Jan;104:101752
- Loh HW, Hong W, Ooi CP, Chakraborty S, Barua PD, Deo RC, et al. Application of Deep Learning Models for Automated Identification of Parkinson's Disease: A Review (2011-2021). Vol. 21, Sensors. 2021.
- 20. Fusco G, De Simone A, Gopinath T, Vostrikov V, Vendruscolo M, Dobson CM, et al. Direct observation of the three regions in a-synuclein that determine its membrane-bound behaviour. Nat Commun [Internet]. 2014:5(1):3827. Available from: https://doi.org/10.1038/ncomms4827
- 21. Alam P, Bousset L, Melki R, Otzen DE. α-synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities. J Neurochem [Internet]. 2019 Sep 1;150(5):522-34. Available from: https://doi.org/10.1111/jnc.14808
- Burré J, Sharma M, Südhof TC. a-Synuclein assembles into higher order multimers upon membrane binding to promote SNARE complex formation. Proc Natl Acad Sci U S A. 2014 Oct;111(40):E4274-83.
- Bartels T, Choi JG, Selkoe DJ. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature [Internet]. 2011;477(7362):107-10. Available from: https://doi.org/10.1038/nature10324
- 24. Pineda A, Burré J. Modulating membrane binding of α-synuclein as a therapeutic strategy. Proc Natl Acad Sci U S A. 2017 Feb;114(6):1223-5.
- 25. Maroteaux L, Campanelli JT, Scheller RH. Synuclein: A neuronspecific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci. 1988:8(8):2804-15.
- 26. Wales P, Pinho R, Lázaro DF, Outeiro TF. Limelight on alphasynuclein: pathological and mechanistic implications in neurodegeneration. J Parkinsons Dis. 2013;3(4):415-59.
- 27. Siddiqui A, Chinta SJ, Mallajosyula JK, Rajagopolan S, Hanson I, Rane A, et al. Selective binding of nuclear alpha-synuclein to the PGC1 alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: implications for Parkinson's disease. Free Radic Biol Med. 2012 Aug;53(4):993-1003.
- Garcia-Esparcia P, Hernández-Ortega K, Koneti A, Gil L, Delgado-Morales R. Castaño E, et al. Altered machinery of protein synthesis is regionand stage-dependent and is associated with α-synuclein oligomers in Parkinson's disease. Acta Neuropathol Commun. 2015 Dec;3:76.
- 29. Outeiro TF, Putcha P, Tetzlaff JE, Spoelgen R, Koker M, Carvalho F, et al. Formation of Toxic Oligomeric α-Synuclein Species in

- Living Cells. PLoS One [Internet]. 2008 Apr 2;3(4):e1867. Available from: https://doi.org/10.1371/journal.pone.0001867
- Pinho R, Paiva I, Jerčić KG, Fonseca-Ornelas L, Gerhardt E, Fahlbusch C, et al. Nuclear localization and phosphorylation modulate pathological effects of alpha-synuclein. Hum Mol Genet [Internet]. 2019 Jan 1;28(1):31-50. Available from: https://doi.org/10.1093/hmg/ddy326
- Koss DJ, Erskine D, Porter A, Palmoski P, Menon H, Todd OGJ, et al. Nuclear alpha-synuclein is present in the human brain and is modified in dementia with Lewy bodies. Acta Neuropathol Commun [Internet]. 2022;10(1):98. Available from: https://doi.org/10.1186/s40478-022-01403-x
- 32. Weston LJ, Bowman AM, Osterberg VR, Meshul CK, Woltjer RL, Unni VK. Aggregated Alpha-Synuclein Inclusions within the Nucleus Predict Impending Neuronal Cell Death in a Mouse Model of Parkinsonism. Vol. 23. International Journal of Molecular Sciences, 2022
- 33. Schaser AJ, Osterberg VR, Dent SE, Stackhouse TL, Wakeham CM Boutros SW et al. Alpha-synuclein is a DNA binding protein that modulates DNA repair with implications for Lewy body disorders. Sci Rep [Internet]. 2019;9(1):10919. Available from: https://doi.org/10.1038/s41598-019-47227-z
- Liu X, Lee YJ, Liou L-C, Ren Q, Zhang Z, Wang S, et al. Alpha-synuclein functions in the nucleus to protect against hydroxyurea-induced replication stress in yeast. Hum Mol Genet. 2011 Sep;20(17):3401-14.
- Jin H, Kanthasamy A, Ghosh A, Yang Y, Anantharam V, Kanthasamy AG, α-Synuclein negatively regulates protein kinase Cδ expression to suppress apoptosis in dopaminergic neurons by reducing p300 histone acetyltransferase activity. J Neurosci Off J Soc Neurosci. 2011 Feb;31(6):2035-51
- Hashimoto M, Hsu LJ, Rockenstein E, Takenouchi T, Mallory M, Masliah E. alpha-Synuclein protects against oxidative stress via inactivation of the c-Jun N-terminal kinase stress-signaling pathway in neuronal cells. J Biol Chem. 2002 Mar: 277(13):11465-72
- 37. Chen V, Moncalvo M, Tringali D, Tagliafierro L, Shriskanda A, Ilich E, et al. The mechanistic role of alpha-synuclein in the nucleus: impaired nuclear function caused by familial Parkinson's disease SNCA mutations. Hum Mol Genet [Internet]. 2020 Nov 4;29(18):3107-21. Available from: https://doi.org/10.1093/hmg/ddaa183
- 38. Vasquez V, Mitra J, Hegde PM, Pandey A, Sengupta S, Mitra S, et al. Chromatin-Bound Oxidized α-Synuclein Causes Strand Breaks in Neuronal Genomes in in vitro Models of Parkinson's Disease. J Alzheimer's Dis. 2017;60(s1):S133-50.
- 39 Geertsma HM, Suk TB, Ricke KM, Horsthuis K, Parmasad J-I A, Fisk ZA, et al. Constitutive nuclear accumulation of endogenous alphasynuclein in mice causes motor impairment and cortical dysfunction, independent of protein aggregation. Hum Mol Genet [Internet]. 2022 Nov 1;31(21):3613-28. Available from: https://doi.org/10.1093/hmg/ddac035
- 40. Paiva I, Pinho R, Pavlou MA, Hennion M, Wales P, Schütz AL, et al. Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage, Hum Mol Genet, 2017;26(12);2231-46.
- 41. Sugeno N, Hasegawa T. Unraveling the Complex Interplay between Alpha-Synuclein and Epigenetic Modification, Vol. 24, International Journal of Molecular Sciences. 2023.
- Ho DH, Kim H, Nam D, Heo J, Son I. Nuclear α-Synuclein-Derived Cytotoxic Effect via Altered Ribosomal RNA Processing in Primary Mouse Embryonic Fibroblasts. Vol. 24, International Journal of Molecular Sciences. 2023.
- 43. Du T. Li G. Zong O. Luo H. Pan Y. Ma K. Nuclear alpha-synuclein accelerates cell senescence and neurodegeneration Immun Ageing [Internet]. 2024;21(1):47. Available from: https://doi.org/10.1186/s12979-024-00429-0
- Magalhães P, Lashuel HA. Opportunities and challenges of alphasynuclein as a potential biomarker for Parkinson's disease and other synucleinopathies. npj Park Dis [Internet]. 2022;8(1):93. Available from: https://doi.org/10.1038/s41531-022-00357-0
- 45. Atik A, Stewart T, Zhang J. Alpha-Synuclein as a Biomarker for Parkinson's Disease. Brain Pathol [Internet]. 2016 May 1;26(3):410-8. Available from: https://doi.org/10.1111/bpa.12370
- Siderowf A, Concha-Marambio L, Lafontant D-E, Farris CM, Ma Y, Urenia PA, et al. Assessment of heterogeneity among participants in the Parkinson's Progression Markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study. Lancet Neurol [Internet]. 2023 May 1;22(5):407-17. Available

47. Russo MJ, Orru CD, Concha-Marambio L, Giaisi S, Groveman BR, Farris CM, et al. High diagnostic performance of independent alpha-

from: https://doi.org/10.1016/S1474-4422(23)00109-6

- synuclein seed amplification assays for detection of early Parkinson's disease. Acta Neuropathol Commun. 2021 Nov;9(1):179.
- 48. Concha-Marambio L, Farris CM, Holquin B, Ma Y, Seibyl J, Russo MJ, et al. Seed Amplification Assay to Diagnose Early Parkinson's and Predict Dopaminergic Deficit Progression. Vol. 36, Movement disorders: official journal of the Movement Disorder Society. United States; 2021. p. 2444-6.
- Simuni T, Chahine LM, Poston K, Brumm M, Buracchio T, Campbell M et al. A biological definition of neuronal α:-synuclein disease: towards an integrated staging system for research. Lancet Neurol [Internet]. 2024 Feb 1;23(2):178-90. Available from: https://doi.org/10.1016/S1474-4422(23)00405-2
- Höglinger GU, Adler CH, Berg D, Klein C, Outeiro TF, Poewe W, et al. A biological classification of Parkinson's disease: the SynNeurGe research diagnostic criteria. Lancet Neurol [Internet]. 2024 Feb 1;23(2):191-204. Available from: https://doi.org/10.1016/S1474-4422(23)00404-0
- 51. Escamilla-Sevilla F, Freire-Alvarez E, Martínez Castrillo JC, Sánchez Ferro Á, Santos-García D. Concerns with the new biological research criteria for synucleinopathy. Lancet Neurol [Internet]. 2024 Jul 1;23(7):662. Available from: https://doi.org/10.1016/S1474-4422(24)00214-X
- Goldman JG, Boeve BF, Galasko D, Galvin JE, Leverenz JB, Taylor J-P. Concerns with the new biological research criteria for synucleinopathy. Lancet Neurol [Internet]. 2024 Jul 1;23(7):660-1. Available from: https://doi.org/10.1016/S1474-4422(24)00225-4
- 53. Lang AE, Höglinger GU, Adler CH, Berg D, Klein C, Outeiro TF, et al. Concerns with the new biological research criteria for synucleinopathy – Authors' reply. Lancet Neurol [Internet]. 2024 Jul 1;23(7):666-8. Available from: https://doi.org/10.1016/S1474-4422(24)00212-6
- 54. Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson's disease therapy? Front Mol Neurosci. 2023;16:1197853.
- 55. Ahanger IA, Dar TA, Small molecule modulators of alphasynuclein aggregation and toxicity: Pioneering an emerging arsenal against Parkinson's disease, Ageing Res Rey [Internet] 2024;101:102538. Available from: https://www.sciencedirect. com/science/article/pii/S1568163724003568
- 56. Schwarz TC, Beier A, Ledolter K, Gossenreiter T, Höfurthner T, Hartl M, et al. High-resolution structural information of membrane-bound α-synuclein provides insight into the MoA of the anti-Parkinson drug UCB0599 Proc Natl Acad Sci [Internet]. 2023 Apr 11;120(15):e2201910120. Available from: https://doi.org/10.1073/pnas.2201910120
- 57. Pagano G, Taylor KI, Anzures-Cabrera J, Marchesi M, Simuni T, Marek K, et al. Trial of Prasinezumab in Early-Stage Parkinson's Disease. N Engl J Med. 2022 Aug;387(5):421-32.
- Jankovic J. Pathogenesis-targeted therapeutic strategies in Parkinson's disease. Mov Disord. 2019 Jan;34(1):41-4.
- 59. Brys M, Fanning L, Hung S, Ellenbogen A, Penner N, Yang M, et al. Randomized phase I clinical trial of anti-α-synuclein antibody BIIB054, Mov Disord, 2019 Aug;34(8):1154-63.
- Lang AE, Siderowf AD, Macklin EA, Poewe W, Brooks DJ, Fernandez HH, et al. Trial of Cinpanemab in Early Parkinson's Disease. N Engl J Med. 2022 Aug;387(5):408-20.
- Jensen PH, Schlossmacher MG, Stefanis L. Who Ever Said It Would Be Easy? Reflecting on Two Clinical Trials Targeting α-Synuclein. Mov Disord [Internet]. 2023 Mar 1;38(3):378-84. Available from: https://doi.org/10.1002/mds.29318
- 62. Albert K, Kälvälä S, Hakosalo V, Syvänen V, Krupa P, Niskanen J, et al. Cellular Models of Alpha-Synuclein Aggregation: What Have We Learned and Implications for Future Study. Biomedicines. 2022 Oct 20;10:2649.
- 63. Devine MJ, Ryten M, Vodicka P, Thomson AJ, Burdon T, Houlden H. et al. Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nat Commun. 2011;2(1).
- 64. Bose A, Petsko GA, Studer L. Induced pluripotent stem cells: a tool for modeling Parkinson's disease. Trends Neurosci. 2022 Aug;45(8):608-20.
- Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006 Aug;126(4):663-76.
- Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human

- fibroblasts by defined factors. Cell. 2007 Nov;131(5):861-72. 67. Charlesworth CT, Nakauchi H. An optimized Sendai viral vector platform for reprogramming to naive pluripotency. Cell Reports Methods [Internet]. 2022 Nov 21;2(11). Available from: https://doi.org/10.1016/j.crmeth.2022.100349
- Kunitomi A, Hirohata R, Arreola V, Osawa M, Kato TM, Nomura M, et al. Improved Sendai viral system for reprogramming to naive pluripotency. Cell reports methods. 2022 Nov;2(11):100317.
- Okumura T. Horie Y. Lai C-Y. Lin H-T. Shoda H. Natsumoto B. et al. Robust and highly efficient hiPSC generation from patient nonmobilized peripheral blood-derived CD34+ cells using the auto-erasable Sendai virus vector. Stem Cell Res Ther [Internet]. 2019;10(1):185. Available from: https://doi.org/10.1186/s13287-019-1273-2
- 70. Ono M, Hamada Y, Horiuchi Y, Matsuo-Takasaki M, Imoto Y, Satomi K, et al. Generation of induced pluripotent stem cells from human nasal enithelial cells, using a Sendai virus vector, PLoS One, 2012:7(8):e42855.
- 71. Komatsu Y, Takeuchi D, Tokunaga T, Sakurai H, Makino A, Honda T, et al. RNA Virus-Based Episomal Vector with a Fail-Safe Switch Facilitating Efficient Genetic Modification and Differentiation of iPSCs. Mol Ther Methods Clin Dev. 2019 Sep;14:47-55.
- 72. Lee Y, Jeong D, Ham S, Son J, Ko K. Generation of integration-free human induced pluripotent stem cells from a patient with sporadic Parkinson's disease. Stem Cell Res [Internet]. 2024;77:103416. Available from: https:// www.sciencedirect.com/science/article/pii/S1873506124001144
- 73. Yoshimatsu S, Nakajima M, Iguchi A, Sanosaka T, Sato T, Nakamura M. et al. Stem Cell Reports, 2021:16:754-70.
- Kime C, Rand TA, Ivey KN, Srivastava D, Yamanaka S, Tomoda K. Practical Integration-Free Episomal Methods for Generating Human Induced Pluripotent Stem Cells, Curr Protoc Hum Genet [Internet]. 2015 Oct 1;87(1):21.2.1-21.2.21. Available from: https://doi.org/10.1002/0471142905.hq2102s87
- 75. Lal R, singh A, watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol [Internet], 2024:980:176819, Available from: https://www. sciencedirect.com/science/article/pii/S0014299924005089
- Drozd AM, Walczak MP Piaskowski S, Stoczynska-Fidelus F, Rieske P, Grzela DP. Generation of human iPSCs from cells of fibroblastic and epithelial origin by means of the oriP/EBNA-1 episomal reprogramming system. Stem Cell Res Ther [Internet]. 2015;6(1):122. Available from: https://doi.org/10.1186/s13287-015-0112-3
- 77. Umrath F. Steinle H. Weber M. Wendel H-P. Reinert S. Alexander D. et al. Generation of iPSCs from Jaw Periosteal Cells Using Self-Replicating RNA. Vol. 20, International Journal of Molecular Sciences. 2019.
- 78. Yoshioka N. Dowdy SF. Enhanced generation of iPSCs from older adult human cells by a synthetic five-factor self-replicative RNA. PLoS One [Internet]. 2017 Jul 27:12(7):e0182018. Available from: https://doi.org/10.1371/journal.pone.0182018
- 79. Li J, Lai H, Yang C, Guo C, CWDO-10. 2147/IJN. SER. No Title.
- 80. Park I-H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, et al. Disease-Specific Induced Pluripotent Stem Cells. Cell [Internet]. 2008 Sep 5;134(5):877-86. Available from: https://doi.org/10.1016/j.cell.2008.07.041
- Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, et al. Parkinson's Disease Patient-Derived Induced Pluripotent Stem Cells Free of Viral Reprogramming Factors. Cell [Internet]. 2009 Mar 6;136(5):964-77. Available from: https://doi.org/10.1016/j.cell.2009.02.013
- 82. Yeap YJ, Teddy TJW, Lee MJ, Goh M, Lim KL. From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson's Disease Modeling and Regenerative Therapy. Int J Mol Sci. 2023 Jan;24(3).
- 83. Bahmad H, Hadadeh O, Chamaa F, Cheaito K, Darwish B, Makkawi A-K, et al. Modeling Human Neurological and Neurodegenerative Diseases: From Induced Pluripotent Stem Cells to Neuronal Differentiation and Its Applications in Neurotrauma. Front Mol Neurosci [Internet]. 2017;10. Available from: https://www.frontiersin.org/journals/ molecular-neuroscience/articles/10.3389/fnmol.2017.00050
- Beghini DG, Kasai-Brunswick TH, Henriques-Pons A. Induced Pluripotent Stem Cells in Drug Discovery and Neurodegenerative Disease Modelling. Vol. 25, International Journal of Molecular Sciences. 2024
- Raja WK, Neves E, Burke C, Jiang X, Xu P, Rhodes KJ, et al. Patientderived three-dimensional cortical neurospheres to model Parkinson's disease. PLoS One [Internet]. 2022;17(12 December):1-16.

Available from: http://dx.doi.org/10.1371/journal.pone.0277532 86. Jusop AS, Thanaskody K, Tye GJ, Dass SA, Wan Kamarul Zaman WS, Nordin F. Development of brain organoid technology derived from iPSC for the neurodegenerative disease modelling; a

glance through. Front Mol Neurosci. 2023;16:1173433.

- 87. Zheng X, Han D, Liu W, Wang X, Pan N, Wang Y, et al. Human iPSC-derived midbrain organoids functionally integrate into striatum circuits and restore motor function in a mouse model of Parkinson's disease. Theranostics [Internet]. 2023;13(8):2673-92. Available from: https://www.thno.org/v13p2673.htm
- 88 Diao X Wang F Becerra-Calixto A Soto C Mukheriee A Induced pluripotent stem cell-derived dopaminergic neurons from familial parkinson's disease patients display α-synuclein pathology and abnormal mitochondrial morphology. Cells. 2021 Sep 1;10(9).
- 89. Haenseler W, Zambon F, Lee H, Vowles J, Rinaldi F, Duggal G et al. Excess g-synuclein compromises phagocytosis in iPSC-derived macrophages. Sci Rep. 2017 Dec 1;7(1).
- 90. Zambon F, Cherubini M, Fernandes HJR, Lang C, Ryan BJ, Volpato V, et al. Cellular α-synuclein pathology is associated with bioenergetic dysfunction in Parkinson's iPSC-derived dopamine neurons. Hum Mol Genet. 2019 Jun 15;28(12):2001-13.
- 91. Holmqvist S, Lehtonen Š, Chumarina M, Puttonen KA, Azevedo C, Lebedeva O, et al. Creation of a library of induced pluripotent stem cells from Parkinsonian patients, npi Park Dis [Internet], 2016;2(1):16009. Available from: https://doi.org/10.1038/npjparkd.2016.9
- 92 Singh Dolt K Hammachi F Kunath T Modeling Parkinson's disease with induced pluripotent stem cells harboring α-synuclein mutations. Brain Pathol. 2017 Jul;27(4):545-51.
- 93. Spathopoulou A. Edenhofer F. Fellner L. Targeting α-Synuclein in Parkinson's Disease by Induced Pluripotent Stem Cell Models Front Neurol 2021:12:786835
- 94. Devito LG, Zanjani ZS, Evans JR, Scardamaglia A, Houlden H, Gandhi S, et al. Generation of TWO G51D SNCA missense mutation iPSC lines (CRICKi011-A, CRICKi012-A) from two individuals at risk of Parkinson's disease. Stem Cell Res [Internet]. 2023;71(April):103134. Available from: https://doi.org/10.1016/j.scr.2023.103134
- 95. Ambasudhan R, Ryan SD, Dolatabadi N, Chan SF, Zhang X, Akhtar MW, et al. Isogenic Human iPSC Parkinson's Model Shows Nitrosative Stress-Induced Dysfunction in MEF2-PGC1α Transcription. Cell. 2013 Dec 5;155(6):1351.
- Barbuti PA, Ohnmacht J, Santos BFR, Antony PM, Massart F, Cruciani G, et al. Gene-corrected p.A30P SNCA patient-derived isogenic neurons rescue neuronal branching and function. Sci Rep. 2021 Dec 1;11(1).
- 97. Bernal-Conde LD, Peña-Martínez V, Morato-Torres CA, Ramos-Acevedo R, Arias-Carrión Ó, Padilla-Godínez FJ, et al. Alpha-Synuclein Gene Alterations Modulate Tyrosine Hydroxylase in Human iPSC-Derived Neurons in a Parkinson's Disease Animal Model Life 2024:14(6)
- Iannielli A, Luoni M, Giannelli SG, Ferese R, Ordazzo G, Fossati M, et al. Modeling native and seeded Synuclein aggregation and related cellular dysfunctions in dopaminergic neurons derived by a new set of isogenic iPSC lines with SNCA multiplications. Cell Death Dis. 2022;13(10).
- 99. Ishikawa K ichi, Shiga T, Yoshino H, Nishioka K, Hattori N, Akamatsu W. Generation of three clones (JUCGRMi002-A, B, C) of induced pluripotent stem cells from a Parkinson's disease patient with SNCA duplication. Stem Cell Res [Internet]. 2024;74(August 2023):103296. Available from: https://doi.org/10.1016/j.scr.2023.103296
- 100. Kozhushko N, Beilina A, Cookson MR. Generation of gene-corrected isogenic controls from Parkinson's disease patient iPSC lines carrying the pathogenic SNCA p.A53T variant. Stem Cell Res. 2023;69:1-11.
- 101. Natalwala A, Behbehani R, Yapom R, Kunath T. An Isogenic Collection of Pluripotent Stem Cell Lines With Elevated α-Synuclein Expression Validated for Neural Induction and Cortical Neuron Differentiation. Front Cell Dev Biol. 2022;10(May):1-16.
- 102. Ryan T, Bamm V V., Stykel MG, Coackley CL, Humphries KM, Jamieson-Williams R, et al. Cardiolipin exposure on the outer mitochondrial membrane modulates α-synuclein. Nat Commun. 2018 Dec 1;9(1).
- 103. Song B, Cha Y, Ko S, Jeon J, Lee N, Seo H, et al. Human autologous iPSC-derived dopaminergic progenitors restore motor function in Parkinson's disease models, J Clin Invest, 2020 Feb:130(2):904-20.
- 104. Patikas N, Ansari R, Metzakopian E. Single-cell transcriptomics identifies perturbed molecular pathways in midbrain organoids using a-synuclein triplication Parkinson's disease patientderived iPSCs. Neurosci Res. 2023;195(April):13-28.

105. Oliveira LMA, Falomir-Lockhart LJ, Botelho MG, Lin KH, Wales P, Koch JC. et al. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-

Induced Pluripotent Stem Cell Lines as a Model for Studying the Cellular Phase of Parkinson's Disease

106. Kim MS, Ra EA, Kweon SH, Seo BA, Ko HS, Oh Y, et al. Advanced human iPSC-based preclinical model for Parkinson's disease with optogenetic alpha-synuclein aggregation. Cell Stem Cell [Internet]. 2023;30(7):973-986.e11. Available from: https://doi.org/10.1016/j.stem.2023.05.015

derived induced pluripotent stem cells. Cell Death Dis. 2015;6(11).

- 107. Brazdis RM. Alecu JE. Marsch D. Dahms A. Simmnacher K, Lörentz S, et al. Demonstration of brain region-specific neuronal vulnerability in human iPSC-based model of familial Parkinson's disease. Hum Mol Genet. 2021:29(7):1180-91
- 108. Becerra-Calixto A, Mukherjee A, Ramirez S, Sepulveda S, Sinha T, Al-Lahham R, et al. Lewy Body-like Pathology and Loss of Dopaminergic Neurons in Midbrain Organoids Derived from Familial Parkinson's Disease Patient. Cells. 2023;12(4).
- 109. Vuidel A, Cousin L, Weykopf B, Haupt S, Hanifehlou Z, Wiest-Daesslé N, et al. High-content phenotyping of Parkinson's disease patient stem cell-derived midbrain dopamineraic neurons using machine learning classification. Stem cell reports. 2022 Oct;17(10):2349-64.
- 110. Kouroupi G, Taoufik E, Vlachos IS, Tsioras K, Antoniou N, Papastefanaki F, et al. Defective synaptic connectivity and axonal neuropathology in a human iPSC-based model of familial Parkinson's disease Proc Natl Acad Sci U.S.A. 2017:114(18):E3679-88
- 111. Lin M, Mackie PM, Shaerzadeh F, Gamble-George J, Miller DR, Martyniuk CJ, et al. In Parkinson's patient-derived dopamine neurons, the triplication of a-synuclein locus induces distinctive firing pattern by impeding D2 receptor autoinhibition. Acta Neuropathol Commun. 2021;9(1):1-28.
- 112. Tanudjojo B, Shaikh SS, Fenyi A, Bousset L, Agarwal D, Marsh J, et al. Phenotypic manifestation of α-synuclein strains derived from Parkinson's disease and multiple system atrophy in human dopaminergic neurons. Nat Commun [Internet]. 2021;12(1):3817. Available from: https://doi.org/10.1038/s41467-021-23682-z
- 113. Hu X, Mao C, Fan L, Luo H, Hu Z, Zhang S, et al. Modeling Parkinson's Disease Using Induced Pluripotent Stem Cells, Stem Cells Int. 2020;2020;1061470.
- 114. Koh YH, Tan LY, Ng S-Y. Patient-Derived Induced Pluripotent Stem Cells and Organoids for Modeling Alpha Synuclein Propagation in Parkinson's Disease. Front Cell Neurosci. 2018;12:413.
- 115. Ke M, Chong C-M, Su H. Using induced pluripotent stem cells for modeling Parkinson's disease. World J Stem Cells. 2019 Sep:11(9):634-49.
- 116. Kim MS, Kim H, Lee G. Precision Medicine in Parkinson's Disease Using Induced Pluripotent Stem Cells. Adv Healthc Mater. 2024 Aug;13(21):e2303041
- 117. Stoddard-Bennett T, Reijo Pera R. Treatment of Parkinson's Disease through Personalized Medicine and Induced Pluripotent Stem Cells. Cells. 2019 Jan;8(1).
- 118. Laperle AH, Sances S, Yucer N, Dardov VJ, Garcia VJ, Ho R, et al. iPSC modeling of young-onset Parkinson's disease reveals a molecular signature of disease and novel therapeutic candidates. Nat Med. 2020;26(2):289-99.
- 119. Kouroupi G. Antoniou N. Prodromidou K. Taoufik E. Matsas R. Patientderived induced pluripotent stem cell-based models in parkinson's disease for drug identification. Int J Mol Sci. 2020;21(19):1-26.
- 120. Pamies D, Wiersma D, Katt ME, Zhao L, Burtscher J, Harris G, et al. Human organotypic brain model as a tool to study chemicalinduced dopaminergic neuronal toxicity. Neurobiol Dis. 2022;169.
- 121. Renner H, Becker KJ, Kagermeier TE, Grabos M, Eliat F, Günther P, et al. Cell-Type-Specific High Throughput Toxicity Testing in Human Midbrain Organoids. Front Mol Neurosci. 2021;14:715054.
- 122. Ha J, Kang JS, Lee M, Baek A, Kim S, Chung S-K, et al. Simplified Brain Organoids for Rapid and Robust Modeling of Brain Disease. Front Cell Dev Biol [Internet]. 2020;8. Available from: https://www.frontiersin.org/journals/ cell-and-developmental-biology/articles/10.3389/fcell.2020.594090
- 123. Wang CH, Lin GC, Fu RH, Huang YC, Chen SY, Lin SZ, et al. Neural stem cells derived from α-synuclein-knockdown iPS cells alleviate Parkinson's disease. Cell Death Discov [Internet]. 2024:10(1). Available from: http://dx.doi.org/10.1038/s41420-024-02176-z
- 124. Castonguay A-M, Morin B, Parent M, Durcan TM, Luo W, Shlaifer I, et al. Virally encoded single-chain antibody fragments targeting alphasynuclein protect against motor impairments and neuropathology in a mouse model of synucleinopathy, bioRxiv [Internet], 2024

- Jan 1;2024.09.09.612044. Available from: http://biorxiv.org/ content/early/2024/09/13/2024.09.09.612044.abstract
- 125. Lam I, Ndayisaba A, Lewis AJ, Fu Y, Sagredo GT, Kuzkina A, et al. Rapid iPSC inclusionopathy models shed light on formation, consequence, and molecular subtype of α-synuclein inclusions. Neuron [Internet]. 2024 Sep 4;112(17):2886-2909.e16. Available from: https://doi.org/10.1016/j.neuron.2024.06.002
- 126. Espay AJ, McFarthing K. Alpha-synuclein and the Parkinson's disease drug pipeline. Parkinsonism Relat Disord [Internet]. 2023;111:105432. Available from: https://www.sciencedirect. com/science/article/pii/S1353802023001554
- 127. Xiao B, Ng HH, Takahashi R, Tan E-K. Induced pluripotent stem cells in Parkinson's disease: scientific and clinical challenges. J Neurol Neurosurg Psychiatry. 2016 Jul;87(7):697-702.
- 128. Xinlin Zeng HQ. Stem Cell Transplantation for Parkinson’:s Disease: Current Challenges and Perspectives. Vol. 13, Aging and disease. p. 1652-63.
- 129. Shastry S, Hu J, Ying M, Mao X. Cell Therapy for Parkinson's Disease. Vol. 15, Pharmaceutics. 2023.
- 130. Bougea A. Some Novel Therapies in Parkinson's Disease: A Promising Path Forward or Not Yet? A Systematic Review of the Literature. Vol. 12, Biomedicines. 2024.
- 131. Valadez-Barba V, Cota-Coronado A, Hernández-Pérez OR, Lugo-Fabres PH, Padilla-Camberos E, Díaz NF, et al. iPSC for modeling neurodegenerative disorders. Regen Ther [Internet]. 2020;15:332-9. Available from: https:// www.sciencedirect.com/science/article/pii/S2352320420300894
- 132. Avazzadeh S, Baena-Montes J, Keighron C, Feller-Sanchez Y, Quinlan L. Modelling Parkinson's Disease: iPSCs towards Better Understanding of Human Pathology, Brain Sci. 2021 Mar 14;11:373.
- 133. Sison SL, Vermilyea SC, Emborg ME, Ebert AD. Using Patient-Derived Induced Pluripotent Stem Cells to Identify Parkinson's Disease Relevant Phenotypes. Curr Neurol Neurosci Rep. 2018 Oct;18(12):84.
- 134. Coccia E, Ahfeldt T. Towards physiologically relevant human pluripotent stem cell (hPSC) models of Parkinson's disease. Stem Cell Res Ther [Internet]. 2021;12(1):253. Available from: https://doi.org/10.1186/s13287-021-02326-5
- 135. Outeiro TF, Heutink P, Bezard E, Cenci AM. From iPS Cells to Rodents and Nonhuman Primates: Filling Gaps in Modeling Parkinson's Disease. Mov Disord [Internet]. 2021 Apr 1;36(4):832-41. Available from: https://doi.org/10.1002/mds.28387
- 136. Costamagna G, Comi GP, Corti S. Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids Vol. 22, International Journal of Molecular Sciences. 2021.
- 137. Lam I, Ndayisaba A, Lewis AJ, Fu Y, Sagredo GT, Kuzkina A, et al. Rapid iPSC inclusionopathy models shed light on formation, consequence, and molecular subtype of α:-synuclein inclusions. Neuron. 2024 Sep;112(17):2886-2909.e16.
- 138. Abdelrahman S, Alsanie WF, Khan ZN, Albalawi HI, Felimban RI, Moretti M, et al. A Parkinson's disease model composed of 3D bioprinted dopaminergic neurons within a biomimetic peptide scaffold, Biofabrication [Internet], 2022;14(4):44103, Available from: https://dx.doi.org/10.1088/1758-5090/ac7eec
- 139. Righetti E, Antonello A, Marchetti L, Domenici E, Reali F. Mechanistic models of α-synuclein homeostasis for Parkinson's disease: A blueprint for therapeutic intervention. Front Appl Math Stat [Internet]. 2022;8. Available from: https://www.frontiersin.org/journals/appliedmathematics-and-statistics/articles/10.3389/fams.2022.1060489
- 140. Akrioti E, Karamitros T, Gkaravelas P, Kouroupi G, Matsas R, Taoufik E. Early Signs of Molecular Defects in iPSC-Derived Neural Stems Cells from Patients with Familial Parkinson's Disease. Biomolecules. 2022;12(7):1-14.
- 141. Corenblum M.J. McRobbie-Johnson A. Carruth E. Bernard K. Luo M, Mandarino LJ, et al. Parallel neurodegenerative phenotypes in sporadic Parkinson's disease fibroblasts and midbrain dopamine neurons. Prog Neurobiol [Internet]. 2023;229(July):102501. Available from: https://doi.org/10.1016/j.pneurobio.2023.102501
- 142. Nuermaimaiti M, Ishikawa K ichi, Oyama G, Nonaka R, Shiga T, Jo T, et al. Human induced pluripotent stem cell-derived dopaminergic neurons release alpha-synuclein through neuronal activity. Neurosci Res [Internet]. 2024; (November). Available from: https://doi.org/10.1016/j.neures.2024.11.007